Search results
Results from the WOW.Com Content Network
Five-way data and six-way data can be represented by similarly higher levels of data aggregation. In general, a multiway data is stored in a multiway array and may be measured at different times, or in different places, using different methodologies, and may contain inconsistencies such as missing data or discrepancies in data representation.
One approach that does yield an interval that can be interpreted as having a given probability of containing the true value is to use a credible interval from Bayesian statistics: this approach depends on a different way of interpreting what is meant by "probability", that is as a Bayesian probability.
Intelligence analysts "would rather use words than numbers to describe how confident we are in our analysis," a senior CIA officer who's served for more than 20 years told me. Moreover, "most consumers of intelligence aren't particularly sophisticated when it comes to probabilistic analysis. They like words and pictures, too.
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]
Use of data requires also understanding of the distinction between enumerative studies and analytic problems." "The interpretation of results of a test or experiment is something else. It is prediction that a specific change in a process or procedure will be a wise choice, or that no change would be better. Either way the choice is prediction.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
He argued that word sense disambiguation for machine translation should be based on the co-occurrence frequency of the context words near a given target word. The underlying assumption that "a word is characterized by the company it keeps" was advocated by J.R. Firth. [2] This assumption is known in linguistics as the distributional hypothesis. [3]
It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words. If only one previous word is considered, it is called a bigram model; if two words, a trigram model; if n − 1 words, an n-gram model. [2]