enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

  3. Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_heap

    The amortized performance of a Fibonacci heap depends on the degree (number of children) of any tree root being (⁡), where is the size of the heap. Here we show that the size of the (sub)tree rooted at any node x {\displaystyle x} of degree d {\displaystyle d} in the heap must have size at least F d + 2 {\displaystyle F_{d+2}} , where F i ...

  4. Pairing heap - Wikipedia

    en.wikipedia.org/wiki/Pairing_heap

    Chen et al. [11] examined priority queues specifically for use with Dijkstra's algorithm and concluded that in normal cases using a d-ary heap without decrease-key (instead duplicating nodes on the heap and ignoring redundant instances) resulted in better performance, despite the inferior theoretical performance guarantees.

  5. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.

  6. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    It can be solved using Yen's algorithm [3] [4] to find the lengths of all shortest paths from a fixed node to all other nodes in an n-node non negative-distance network, a technique requiring only 2n 2 additions and n 2 comparison, fewer than other available shortest path algorithms need.

  7. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:

  8. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    Prim's algorithm has many applications, such as in the generation of this maze, which applies Prim's algorithm to a randomly weighted grid graph. The time complexity of Prim's algorithm depends on the data structures used for the graph and for ordering the edges by weight, which can be done using a priority queue. The following table shows the ...

  9. Smoothsort - Wikipedia

    en.wikipedia.org/wiki/Smoothsort

    In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.