Search results
Results from the WOW.Com Content Network
Quantification may refer to: Quantification (science), the act of counting and measuring; Quantification (machine learning), the task of estimating class prevalence ...
The ease of quantification is one of the features used to distinguish hard and soft sciences from each other. Scientists often consider hard sciences to be more scientific or rigorous, but this is disputed by social scientists who maintain that appropriate rigor includes the qualitative evaluation of the broader contexts of qualitative data.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃ x " or " ∃( x ...
This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [ 2 ] or "∃ =1 ". For example, the formal statement
A C q may be used for quantification of the target sequence or to determine whether the target sequence is present or not. Two criteria to determine the C q are used by different thermocyclers: threshold cycle (C t ) is the number of cycles required for the fluorescent signal to cross a given value threshold.
Each kind of quantification defines a corresponding closure operator on the set of formulas, by adding, for each free variable x, a quantifier to bind x. [9] For example, the existential closure of the open formula n >2 ∧ x n + y n = z n is the closed formula ∃ n ∃ x ∃ y ∃ z ( n >2 ∧ x n + y n = z n ); the latter formula, when ...