Search results
Results from the WOW.Com Content Network
In organic chemistry, organocatalysis is a form of catalysis in which the rate of a chemical reaction is increased by an organic catalyst. This "organocatalyst" consists of carbon , hydrogen , sulfur and other nonmetal elements found in organic compounds.
The Hajos–Parrish–Eder–Sauer–Wiechert and Barbas-List [1] reactions in organic chemistry are a family of proline-catalysed asymmetric aldol reactions.. In the 1970s, two research groups discovered (and published) almost simultaneously their discoveries of two related intramolecular reactions: Zoltan Hajos and David Parrish at Hoffmann-La Roche [2] [3] and Rudolf Wiechert et al at ...
Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry. This theme is often considered the starting point for the area of organocatalysis, even though early discoveries went unappreciated. [1] Modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, proceed with excellent stereocontrol. [2]: 5574 [3]
[13] [14] He is the editor-in-chief of the scientific journal Synlett. [15] As of 2021, he has an h-index of 95 according to Google Scholar [16] and of 86 according to Scopus. [17] Catalyst for asymmetric reactions, L-proline. List is considered to be one of the founders of organocatalysis, which uses non-metal and non-enzyme catalysts. [18]
This is a list of notable medical and scientific journals that publish articles in pharmacology and the pharmaceutical sciences This is a dynamic list and may never be able to satisfy particular standards for completeness.
Organocatalysis is a subfield of catalysis that explores the potential of organic small molecules as catalysts, particularly for the enantioselective creation of chiral molecules. One strategy in this subfield is the use of chiral secondary amines to activate carbonyl compounds.
Schreiner's thiourea, N,N'-bis3,5-bis(trifluormethyl)phenyl thiourea, combines all structural features for double H-bonding mediated organocatalysis: electron-poor; rigid structure; non-coordinating, electron withdrawing substituents in 3,4, and/or 5 position of a phenyl ring; the 3,5-bis(trifluoromethyl)phenyl-group is the preferred substituent
Hydrogen-bond catalysis is a type of organocatalysis that relies on use of hydrogen bonding interactions to accelerate and control organic reactions. In biological systems, hydrogen bonding plays a key role in many enzymatic reactions, both in orienting the substrate molecules and lowering barriers to reaction. [ 1 ]