Search results
Results from the WOW.Com Content Network
Causal layered analysis (CLA) is a theory and method that seeks to integrate empiricist, interpretive, critical, and action learning modes of research. In this method, forecasts, the meanings individuals give to these forecasts, the critical assumptions used, the narratives these are based on, and the actions and interventions that result are ...
In statistics, trend analysis often refers to techniques for extracting an underlying pattern of behavior in a time series which would otherwise be partly or nearly completely hidden by noise. If the trend can be assumed to be linear, trend analysis can be undertaken within a formal regression analysis , as described in Trend estimation .
Futures techniques used in the multi-disciplinary field of futurology by futurists in Americas and Australasia, and futurology by futurologists in EU, include a diverse range of forecasting methods, including anticipatory thinking, backcasting, simulation, and visioning. Some of the anticipatory methods include, the delphi method, causal ...
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data.
Forecasting can be described as predicting what the future will look like, whereas planning predicts what the future should look like. [6] There is no single right forecasting method to use. Selection of a method should be based on your objectives and your conditions (data etc.). [9] A good way to find a method is by visiting a selection tree.
Cash flow forecasting is the process of obtaining an estimate of a company's future cash levels, and its financial position more generally. [1] A cash flow forecast is a key financial management tool, both for large corporates, and for smaller entrepreneurial businesses. The forecast is typically based on anticipated payments and receivables.
Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file