Search results
Results from the WOW.Com Content Network
When "E" is used to denote "expected value", authors use a variety of stylizations: the expectation operator can be stylized as E (upright), E (italic), or (in blackboard bold), while a variety of bracket notations (such as E(X), E[X], and EX) are all used. Another popular notation is μ X.
Equivalent potential temperature, commonly referred to as theta-e (), is a quantity that is conserved during changes to an air parcel's pressure (that is, during vertical motions in the atmosphere), even if water vapor condenses during that pressure change.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
For instance, e x can be defined as (+). Or e x can be defined as f x (1), where f x : R → B is the solution to the differential equation df x / dt (t) = x f x (t), with initial condition f x (0) = 1; it follows that f x (t) = e tx for every t in R.
for -measurable , we have ((())) =, i.e. the conditional expectation () is in the sense of the L 2 (P) scalar product the orthogonal projection from to the linear subspace of -measurable functions. (This allows to define and prove the existence of the conditional expectation based on the Hilbert projection theorem .)
[74] [75] American physical chemists Gilbert N. Lewis and Richard C. Tolman used two variations of the formula in 1909: m = E / c 2 and m 0 = E 0 / c 2 , with E being the relativistic energy (the energy of an object when the object is moving), E 0 is the rest energy (the energy when not moving), m is the relativistic mass (the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The polynomial S t can also be given the following "interpolation" characterization. Define e t (z) ≡ e tz, and n ≡ deg P. Then S t (z) is the unique degree < n polynomial which satisfies S t (k) (a) = e t (k) (a) whenever k is less than the multiplicity of a as a root of P. We assume, as we obviously can, that P is the minimal polynomial of A.