Search results
Results from the WOW.Com Content Network
The space complexity of an algorithm or a data structure is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. [ 1 ]
The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for ...
In particular, larger instances will require more time to solve. Thus the time required to solve a problem (or the space required, or any measure of complexity) is calculated as a function of the size of the instance. The input size is typically measured in bits. Complexity theory studies how algorithms scale as input size increases.
The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
In this case, the algorithm returns true when the machine has a nondeterministic accepting path, and false otherwise. The number of configurations in this graph is (()), from which it follows that applying the algorithm to this implicit graph uses space (()). Thus by deciding connectivity in a graph representing nondeterministic Turing machine ...
In computational complexity theory, although it would be a non-formal usage of the term, the time/space complexity of a particular problem in terms of all algorithms that solve it with computational resources (i.e., time or space) bounded by a function of the input's size.
In computational complexity theory, SC (Steve's Class, named after Stephen Cook) [1] is the complexity class of problems solvable by a deterministic Turing machine in polynomial time (class P) and polylogarithmic space (class PolyL) (that is, O((log n) k) space for some constant k).