Search results
Results from the WOW.Com Content Network
In graph theory, a deletion-contraction formula / recursion is any formula of the following recursive form: = + (/). Here G is a graph, f is a function on graphs, e is any edge of G, G \ e denotes edge deletion, and G / e denotes contraction. Tutte refers to such a function as a W-function. [1]
Another problem related to reachability queries is in quickly recalculating changes to reachability relationships when some portion of the graph is changed. For example, this is a relevant concern to garbage collection which needs to balance the reclamation of memory (so that it may be reallocated) with the performance concerns of the running ...
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.
The works of Ramsey on colorations and more specially the results obtained by Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch published a method for solving the problem using computers. [29]
For a different example, in decision theory, an agent making an optimal choice in the context of incomplete information is often assumed to maximize the expected value of their utility function. It is possible to construct an expected value equal to the probability of an event by taking the expectation of an indicator function that is one if ...
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. An example of graphs with treewidth at most 2 are the series–parallel graphs.
Alternatively, describing the problem using graph theory: The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment.