enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order A relation that is reflexive, antisymmetric, and transitive. Strict partial order A relation that is irreflexive, asymmetric, and transitive. Total order

  4. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.

  5. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  6. Reflection symmetry - Wikipedia

    en.wikipedia.org/wiki/Reflection_symmetry

    In formal terms, a mathematical object is symmetric with respect to a given operation such as reflection, rotation, or translation, if, when applied to the object, this operation preserves some property of the object. [1] The set of operations that preserve a given property of the object form a group. Two objects are symmetric to each other ...

  7. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Y in the "Symmetric" column and in the ...

  8. Relation (philosophy) - Wikipedia

    en.wikipedia.org/wiki/Relation_(philosophy)

    An equivalence relation is a relation that is reflexive, symmetric, and transitive, like equality expressed through the symbol "=". [74] A strict partial order is a relation that is irreflexive, anti-symmetric, and transitive, like the relation being less than expressed through the symbol "<". [75]

  9. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    Reflexive: Irreflexive: Asymmetric: Total, Semiconnex: Anti-reflexive: Equivalence relation Preorder (Quasiorder) Partial order Total preorder Total order Prewellordering Well-quasi-ordering Well-ordering Lattice Join-semilattice Meet-semilattice Strict partial order Strict weak order Strict total order Symmetric: Antisymmetric