Search results
Results from the WOW.Com Content Network
Every atom in the ring must have an occupied p orbital, which overlaps with p orbitals on either side (completely conjugated). Molecule must be planar. It must contain an odd number of pairs of pi electrons; must satisfy Hückel's rule: (4n+2) pi electrons, where n is an integer starting at zero.
This can also explain why phosphorus in phosphanes can't donate electron density to carbon through induction (i.e. +I effect) although it is less electronegative than carbon (2.19 vs 2.55, see electronegativity list) and why hydroiodic acid (pKa = -10) being much more acidic than hydrofluoric acid (pKa = 3).
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
Benzene and cyclohexane have a similar structure, only the ring of delocalized electrons and the loss of one hydrogen per carbon distinguishes it from cyclohexane. The molecule is planar. [ 58 ] The molecular orbital description involves the formation of three delocalized π orbitals spanning all six carbon atoms, while the valence bond ...
(a) The LDQ structure of the B 2 H 7 − molecule. The nuclei are as indicated and the electrons are denoted by either dots or crosses, depending on their relative spins. The thick lines denote coincident electron pairs. (b) The traditional valence bond theory structure for the B 2 H 7 − molecule. The horizontal bar stretching across the ...
Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon (i.e., are carbocycles), none of the atoms are carbon (inorganic cyclic compounds), or where both carbon and non-carbon atoms are present (heterocyclic compounds with rings containing both carbon and non-carbon). Depending on the ring size, the ...
For benzene the lowest π orbital is non-degenerate and can hold 2 electrons, and the next 2 π orbitals form a degenerate pair which can hold 4 electrons. The 6 π electrons in benzene therefore form a stable closed shell in a regular hexagonal molecule. [13] [8] However for cyclobutadiene or cyclooctatrene with regular geometries, the highest ...
The phenyl group is closely related to benzene and can be viewed as a benzene ring, minus a hydrogen, which may be replaced by some other element or compound to serve as a functional group. A phenyl group has six carbon atoms bonded together in a hexagonal planar ring, five of which are bonded to individual hydrogen atoms, with the remaining ...