Search results
Results from the WOW.Com Content Network
Nanofibers were first produced via electrospinning more than four centuries ago. [28] [29] Beginning with the development of the electrospinning method, English physicist William Gilbert (1544-1603) first documented the electrostatic attraction between liquids by preparing an experiment in which he observed a spherical water drop on a dry surface warp into a cone shape when it was held below ...
Electrospinning is a fiber production method that uses electrical force (based on Electrohydrodynamic [1] principals) to draw charged threads of polymer solutions for producing nanofibers with diameters ranging from nanometers to micrometers.
Carbon nanofibers (CNFs), vapor grown carbon fibers (VGCFs), or vapor grown carbon nanofibers (VGCNFs) are cylindrical nanostructures with graphene layers arranged as stacked cones, cups or plates. Carbon nanofibers with graphene layers wrapped into perfect cylinders are called carbon nanotubes .
To put it simply, nanofibers are a super, super thin material that can be made from a super strong (and super thin) carbon material, and are generally good conductors of heat and electricity. If ...
The exceptional electrical and mechanical properties of carbon nanotubes have made them alternatives to the traditional electrical actuators for both microscopic and macroscopic applications. Carbon nanotubes are very good conductors of both electricity and heat, and they are also very strong and elastic molecules in certain directions.
Crystallographic defects also affect the tube's electrical properties. A common result is lowered conductivity through the defective region of the tube. A defect in metallic armchair-type tubes (which can conduct electricity) can cause the surrounding region to become semiconducting, and single monatomic vacancies induce magnetic properties. [74]
A strong electric field is applied to the solution to charge the polymer strands. The solution is put into a syringe and aimed at an oppositely charged collector plate. When the force of attraction between the polymer nanofibers and the collector plate exceed the surface tension of the solution , the nanofibers are released from the solution ...
A strong electric field of the order of 103 V/cm is applied to the polymer solution droplets emerging from a cylindrical die. The electric charges, which are accumulated on the surface of the droplet, cause droplet deformation along the field direction, even though the surface tension counteracts droplet evolution. In supercritical electric ...