Search results
Results from the WOW.Com Content Network
Nanowires also show other peculiar electrical properties due to their size. Unlike single wall carbon nanotubes, whose motion of electrons can fall under the regime of ballistic transport (meaning the electrons can travel freely from one electrode to the other), nanowire conductivity is strongly influenced by edge effects.
Most types of molecular wires are derived from organic molecules. One naturally occurring molecular wire is DNA.Prominent inorganic examples include polymeric materials such as Li 2 Mo 6 Se 6 [1] and Mo 6 S 9−x I x, [2] [3] [4] [Pd 4 (CO) 4 (OAc) 4 Pd(acac) 2], [5] and single-molecule extended metal atom chains (EMACs) which comprise strings of transition metal atoms directly bonded to each ...
While not capable of the same scalability as single nanowire FETs, the use of pre-fabricated multiple nanowires for the channel increases reliability and reduces production costs since large volume printing processes may be used to deposit the nanowires at a lower temperature than conventional fabrication procedures.
One consequence of this quantization is that the classical formula for calculating the electrical resistance of a wire, R = ρ l A , {\displaystyle R=\rho {\frac {l}{A}},} is not valid for quantum wires (where ρ {\displaystyle \rho } is the material's resistivity , l {\displaystyle l} is the length, and A {\displaystyle A} is the cross ...
A popular group of molecules, that can work as the semiconducting channel material in a molecular transistor, is the oligopolyphenylenevinylenes (OPVs) that works by the Coulomb blockade mechanism when placed between the source and drain electrode in an appropriate way. [4] Fullerenes work by the same mechanism and have also been commonly used.
Lieber developed applications of scanning probe microscopies that could provide direct experimental measurement of the electrical and mechanical properties of individual carbon nanotubes and nanowires. [26] [27] This work showed that semiconductor nanowires with controlled electrical properties can be synthesized, providing electronically ...
The nanowires are sensitive to detect trace biomarkers that diffuse into the IV line through blood which can monitor kidney or organ failure. These nanowires would allow for continuous biomarker measurement, which provides some benefits in terms of temporal sensitivity over traditional biomarker quantification assays such as ELISA.
The Virtual breakdown mechanism is a concept in the field of electrochemistry.In electrochemical reactions, when the cathode and the anode are close enough to each other (i.e., so-called "nanogap electrochemical cells"), the double layer of the regions from the two electrodes is overlapped, forming a large electric field uniformly distributed inside the entire electrode gap.