enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double negation - Wikipedia

    en.wikipedia.org/wiki/Double_negation

    In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

  3. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  4. Double-negation translation - Wikipedia

    en.wikipedia.org/wiki/Double-negation_translation

    Let T N consist of the double-negation translations of the formulas in T. The fundamental soundness theorem (Avigad and Feferman 1998, p. 342; Buss 1998 p. 66) states: If T is a set of axioms and φ is a formula, then T proves φ using classical logic if and only if T N proves φ N using intuitionistic logic.

  5. Negation - Wikipedia

    en.wikipedia.org/wiki/Negation

    Within a system of classical logic, double negation, that is, the negation of the negation of a proposition , is logically equivalent to . Expressed in symbolic terms, . In intuitionistic logic, a proposition implies its double negation, but not conversely. This marks one important difference between classical and intuitionistic negation.

  6. Logical equivalence - Wikipedia

    en.wikipedia.org/wiki/Logical_equivalence

    Syntactically, (1) and (2) are derivable from each other via the rules of contraposition and double negation. Semantically, (1) and (2) are true in exactly the same models (interpretations, valuations); namely, those in which either Lisa is in Denmark is false or Lisa is in Europe is true. (Note that in this example, classical logic is assumed

  7. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    Of its five connectives, {∧, ∨, →, ¬, ⊥}, only negation "¬" can be reduced to other connectives (see False (logic) § False, negation and contradiction for more). Neither conjunction, disjunction, nor material conditional has an equivalent form constructed from the other four logical connectives.

  8. Classical logic - Wikipedia

    en.wikipedia.org/wiki/Classical_logic

    Classical logic is the standard logic of mathematics. Many mathematical theorems rely on classical rules of inference such as disjunctive syllogism and the double negation elimination. The adjective "classical" in logic is not related to the use of the adjective "classical" in physics, which has another meaning.

  9. Conjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_normal_form

    In classical logic each propositional formula can be converted to an equivalent formula that is in CNF. [1] This transformation is based on rules about logical equivalences: double negation elimination, De Morgan's laws, and the distributive law.