enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The "mechanical" approach postulates the law of conservation of energy. It also postulates that energy can be transferred from one thermodynamic system to another adiabatically as work, and that energy can be held as the internal energy of a thermodynamic system. It also postulates that energy can be transferred from one thermodynamic system to ...

  3. Conservation of energy - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_energy

    This is an accepted version of this page This is the latest accepted revision, reviewed on 31 December 2024. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion ...

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    Work is a process of transferring energy to or from a system in ways that can be described by macroscopic mechanical forces acting between the system and its surroundings. The work done by the system can come from its overall kinetic energy, from its overall potential energy, or from its internal energy.

  5. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    This creates a limit to the amount of heat energy that can do work in a cyclic process, a limit called the available energy. Mechanical and other forms of energy can be transformed in the other direction into thermal energy without such limitations. [14] The total energy of a system can be calculated by adding up all forms of energy in the system.

  6. Portal:Energy - Wikipedia

    en.wikipedia.org/wiki/Portal:Energy

    Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

  7. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    Energy is neither created nor destroyed, but is simply converted from one form to another (see First law of thermodynamics). In contrast to energy, exergy is always destroyed when a process is non-ideal or irreversible (see Second law of thermodynamics). To illustrate, when someone states that "I used a lot of energy running up that hill", the ...

  8. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    It can be linked to the law of conservation of energy. [10] Conceptually, the first law describes the fundamental principle that systems do not consume or 'use up' energy, that energy is neither created nor destroyed, but is simply converted from one form to another. The second law is concerned with the direction of natural processes. [11]

  9. Julius von Mayer - Wikipedia

    en.wikipedia.org/wiki/Julius_von_Mayer

    Julius Robert von Mayer (25 November 1814 – 20 March 1878) was a German physician, chemist, and physicist and one of the founders of thermodynamics.He is best known for enunciating in 1841 one of the original statements of the conservation of energy or what is now known as one of the first versions of the first law of thermodynamics, namely that "energy can be neither created nor destroyed".