enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rule of mixtures - Wikipedia

    en.wikipedia.org/wiki/Rule_of_mixtures

    In general there are two models, one for axial loading (Voigt model), [2] [4] and one for transverse loading (Reuss model). [ 2 ] [ 5 ] In general, for some material property E {\displaystyle E} (often the elastic modulus [ 1 ] ), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as

  3. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties (geometric properties) such ...

  4. P-delta effect - Wikipedia

    en.wikipedia.org/wiki/P-Delta_Effect

    P-delta is a moment found by multiplying the force due to the weight of the structure and applied axial load, P, by the first-order deflection, Δ or δ. NUMERICAL EXAMPLE OF P DELTA EFFECT ON A CALCULATOR You have a 1 meter tall rigid vertical rod that rotates on a hinge at the bottom of the rod. There is a 1 newton load on the top of the rod.

  5. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.

  6. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted eigenfrequencies for a given set of boundary conditions. The latter effect is more noticeable for higher frequencies as the wavelength becomes shorter ...

  7. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    1.0 x Dead Load + 1.0 x Live Load. Different load cases would be used for different loading conditions. For example, in the case of design for fire a load case of 1.0 x Dead Load + 0.8 x Live Load may be used, as it is reasonable to assume everyone has left the building if there is a fire.

  9. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands. In an AX 3 E 2 molecule, the two lone pairs occupy two equatorial positions, and the three ligand atoms occupy the two axial positions as well as one equatorial position. The three atoms bond at 90 ...