enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis. Thus, the helicoidal field formed by the velocity vectors in a moving rigid body flattens out the further the points are radially from the twist axis.

  3. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction.

  4. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry. The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space).

  6. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle).

  7. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Then their respective planes are perpendicular to vectors a and b, and the direction of L must be perpendicular to both. Hence we may set d = a × b , which is nonzero because a , b are neither zero nor parallel (the planes being distinct and intersecting).

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The mathematical tools of vector algebra provide the means to describe motion in two, three or more dimensions. Vectors are often denoted with an arrow, as in , or in bold typeface, such as . Often, vectors are represented visually as arrows, with the direction of the vector being the direction of the arrow, and the magnitude of the vector ...

  9. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)