enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ArviZ - Wikipedia

    en.wikipedia.org/wiki/ArviZ

    Integration with established probabilistic programming languages including; PyStan (the Python interface of Stan), PyMC, [15] Edward [16] Pyro, [17] and easily integrated with novel or bespoke Bayesian analyses. ArviZ is also available in Julia, using the ArviZ.jl interface

  3. Probabilistic programming - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_programming

    Probabilistic programming (PP) is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically. [1] It represents an attempt to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.

  4. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    Differentiable programming has been applied in areas such as combining deep learning with physics engines in robotics, [12] solving electronic structure problems with differentiable density functional theory, [13] differentiable ray tracing, [14] image processing, [15] and probabilistic programming. [5]

  5. Probabilistic numerics - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_numerics

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [19]Probabilistic numerics have also been studied for mathematical optimization, which consist of finding the minimum or maximum of some objective function given (possibly noisy or indirect) evaluations of that function at a set of points.

  6. Stochastic control - Wikipedia

    en.wikipedia.org/wiki/Stochastic_control

    In the case where the maximization is an integral of a concave function of utility over an horizon (0,T), dynamic programming is used. There is no certainty equivalence as in the older literature, because the coefficients of the control variables—that is, the returns received by the chosen shares of assets—are stochastic.

  7. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    Probabilistic graphical models form a large class of structured prediction models. In particular, Bayesian networks and random fields are popular. Other algorithms and models for structured prediction include inductive logic programming , case-based reasoning , structured SVMs , Markov logic networks , Probabilistic Soft Logic , and constrained ...

  8. Sweet News: These Are the Most Popular Christmas Cookies in ...

    www.aol.com/lifestyle/sweet-news-most-popular...

    This map from Google Trends shows which Christmas cookies are the most searched for in America by state in 2024. See if your favorite made the list.

  9. Stochastic dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Stochastic_dynamic_programming

    A gambler has $2, she is allowed to play a game of chance 4 times and her goal is to maximize her probability of ending up with a least $6. If the gambler bets $ on a play of the game, then with probability 0.4 she wins the game, recoup the initial bet, and she increases her capital position by $; with probability 0.6, she loses the bet amount $; all plays are pairwise independent.