enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  3. Abstract index notation - Wikipedia

    en.wikipedia.org/wiki/Abstract_index_notation

    Abstract index notation handles braiding as follows. On a particular tensor product, an ordering of the abstract indices is fixed (usually this is a lexicographic ordering). The braid is then represented in notation by permuting the labels of the indices. Thus, for instance, with the Riemann tensor

  4. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    This notation allows an efficient expression of such tensor fields and operations. While much of the notation may be applied with any tensors, operations relating to a differential structure are only applicable to tensor fields. Where needed, the notation extends to components of non-tensors, particularly multidimensional arrays.

  5. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  6. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    On a manifold, a tensor field will typically have multiple, upper and lower indices, where Einstein notation is widely used. When the manifold is equipped with a metric, covariant and contravariant indices become very closely related to one another. Contravariant indices can be turned into covariant indices by contracting with the metric tensor ...

  7. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    A simple tensor (also called a tensor of rank one, elementary tensor or decomposable tensor [1]) is a tensor that can be written as a product of tensors of the form = where a, b, ..., d are nonzero and in V or V ∗ – that is, if the tensor is nonzero and completely factorizable. Every tensor can be expressed as a sum of simple tensors.

  8. Einstein tensor - Wikipedia

    en.wikipedia.org/wiki/Einstein_tensor

    The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds.In index-free notation it is defined as =, where is the Ricci tensor, is the metric tensor and is the scalar curvature, which is computed as the trace of the Ricci tensor by ⁠ = ⁠.

  9. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K {\displaystyle \alpha :V\rightarrow K} .