Search results
Results from the WOW.Com Content Network
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
In Einstein notation, ... where the notation ∇ B means the subscripted gradient operates on only the factor B. [1] [2] Less general but similar is the Hestenes ...
Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise. ... The gradient of ...
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del. The notation grad f is also commonly used to ...
In Einstein notation (implicit summation over repeated index), contravariant components are denoted with upper indices as in = A covector or cotangent vector has components that co-vary with a change of basis in the corresponding (initial) vector space. That is, the components must be transformed by the same matrix as the change of basis matrix ...
If ,, are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (,,), then the gradient of the tensor field is given by (see [3] for a proof.) = From this definition we have the following relations for the gradients of a scalar field ϕ {\displaystyle \phi } , a vector field v , and a second ...
Examples include the deformation gradient and the first Piola–Kirchhoff stress tensor. As with many applications of tensors, Einstein summation notation is frequently used. To clarify this notation, capital indices are often used to indicate reference coordinates and lowercase for present coordinates.
where here and below the Einstein notation is implied, so that the repeated index i is summed over. The gradient of a scalar function ƒ is the vector field grad f that may be defined through the inner product ⋅ , ⋅ {\displaystyle \langle \cdot ,\cdot \rangle } on the manifold, as