Search results
Results from the WOW.Com Content Network
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor ...
In a light-cone coordinate system, two of the coordinates are null vectors and all the other coordinates are spatial. The former can be denoted + and and the latter .. Assume we are working with a (d,1) Lorentzian signature.
In abstract index notation, the EFE reads as follows: + = where is the Einstein tensor, is the cosmological constant, is the metric tensor, is the speed of light in vacuum and is the gravitational constant, which comes from Newton's law of universal gravitation.
In physics, the zitterbewegung (German pronunciation: [ˈtsɪtɐ.bəˌveːɡʊŋ], from German zittern 'to tremble, jitter' and Bewegung 'motion') is the theoretical prediction of a rapid oscillatory motion of elementary particles that obey relativistic wave equations.
The Einstein field equation (EFE) describing the geometry of spacetime is given as = where is the Ricci tensor, is the Ricci scalar, is the energy–momentum tensor, = / is the Einstein gravitational constant, and is the spacetime metric tensor that represents the solutions of the equation.
Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. For example, the physicist Albert Einstein's formula = is the quantitative representation in mathematical notation of mass–energy equivalence. [1]
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.