Search results
Results from the WOW.Com Content Network
The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
Facial recognition systems have been deployed in advanced human–computer interaction, video surveillance, law enforcement, passenger screening, decisions on employment and housing and automatic indexing of images. [4] [5] Facial recognition systems are employed throughout the world today by governments and private companies. [6]
Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
Face detection is a binary classification problem combined with a localization problem: given a picture, decide whether it contains faces, and construct bounding boxes for the faces. To make the task more manageable, the Viola–Jones algorithm only detects full view (no occlusion), frontal (no head-turning), upright (no rotation), well-lit ...
This comparison of optical character recognition software includes: OCR engines, that do the actual character identification; Layout analysis software, that divide scanned documents into zones suitable for OCR; Graphical interfaces to one or more OCR engines
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]