Search results
Results from the WOW.Com Content Network
Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010. SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words.
SHA-1: 1995 SHA-0: Specification: SHA-256 SHA-384 SHA-512: 2002 SHA-224: 2004 SHA-3 (Keccak) 2008 Guido Bertoni Joan Daemen Michaël Peeters Gilles Van Assche: RadioGatún: Website Specification: Streebog: 2012 FSB, InfoTeCS JSC RFC 6986: Tiger: 1995 Ross Anderson Eli Biham: Website Specification: Whirlpool: 2004 Vincent Rijmen Paulo Barreto ...
SHA-3 (Secure Hash Algorithm 3) is the latest [4] member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. [5] [6] [7] Although part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2.
SHA-1 SHA-2 SHA-3 RIPEMD-160 Tiger Whirlpool BLAKE2 GOST R 34.11-94 [45] (aka GOST 34.311-95) GOST R 34.11-2012 (Stribog) [46] SM3; Botan: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Bouncy Castle: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes BSAFE Crypto-J Yes Yes Yes Yes Yes No No No No No No cryptlib: Yes Yes Yes Yes Yes No Yes No No No No ...
The Computer Language Benchmarks Game site warns against over-generalizing from benchmark data, but contains a large number of micro-benchmarks of reader-contributed code snippets, with an interface that generates various charts and tables comparing specific programming languages and types of tests.
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
For example, text in any natural language has highly non-uniform distributions of characters, and character pairs, characteristic of the language. For such data, it is prudent to use a hash function that depends on all characters of the string—and depends on each character in a different way. [clarification needed]
BLAKE was submitted to the NIST hash function competition by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. In 2008, there were 51 entries. BLAKE made it to the final round consisting of five candidates but lost to Keccak in 2012, which was selected for the SHA-3 algorithm.