Search results
Results from the WOW.Com Content Network
The density is usually on the order of 1000 kg/m^3, i.e. that of water. Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to ...
Viscosity (Newtonian · non ... kg m −3 s −1 [M] [L] −3 [T] −1: Mass current, mass flow rate: I m ... kg m s −2 [M][L][T] −2: Equations. Physical ...
D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ...
The submultiple centistokes (cSt) is often used instead, 1 cSt = 1 mm 2 ·s −1 = 10 −6 m 2 ·s −1. 1 cSt is 1 cP divided by 1000 kg/m^3, close to the density of water. The kinematic viscosity of water at 20 °C is about 1 cSt.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
ρ is the density of the fluid (SI units: kg/m 3) u is the flow speed (m/s) L is a characteristic length (m) μ is the dynamic viscosity of the fluid (Pa·s or N·s/m 2 or kg/(m·s)) ν is the kinematic viscosity of the fluid (m 2 /s). The Brezina equation
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...
The basic form of a 2-dimensional thin film equation is [3] [4] [5] = where the fluid flux is = [(+ ^) + ^] +, and μ is the viscosity (or dynamic viscosity) of the liquid, h(x,y,t) is film thickness, γ is the interfacial tension between the liquid and the gas phase above it, is the liquid density and the surface shear.