enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  4. Added mass - Wikipedia

    en.wikipedia.org/wiki/Added_mass

    In fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating or decelerating body must move (or deflect) some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously.

  5. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. [1] The object's mass also determines the strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg).

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities (in that they have magnitude and direction).

  7. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    Since the definition of acceleration is a = dv/dt, the second law can be written in the simplified and more familiar form: F = m a . {\displaystyle \mathbf {F} =m\mathbf {a} \,.} So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle.

  8. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    For a constant mass, force equals mass times acceleration (=). For every action, there is an equal and opposite reaction. (In other words, whenever one body exerts a force F → {\displaystyle {\vec {F}}} onto a second body, (in some cases, which is standing still) the second body exerts the force − F → {\displaystyle -{\vec {F}}} back onto ...

  9. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    This provides a definition for the moment of inertia, which is the rotational equivalent for mass. In more advanced treatments of mechanics, where the rotation over a time interval is described, the moment of inertia must be substituted by the tensor that, when properly analyzed, fully determines the characteristics of rotations including ...