enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  3. Weka (software) - Wikipedia

    en.wikipedia.org/wiki/Weka_(software)

    Waikato Environment for Knowledge Analysis (Weka) is a collection of machine learning and data analysis free software licensed under the GNU General Public License.It was developed at the University of Waikato, New Zealand and is the companion software to the book "Data Mining: Practical Machine Learning Tools and Techniques".

  4. Boosting (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Boosting_(machine_learning)

    Orange, a free data mining software suite, module Orange.ensemble Weka is a machine learning set of tools that offers variate implementations of boosting algorithms like AdaBoost and LogitBoost R package GBM (Generalized Boosted Regression Models) implements extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting ...

  5. Auto-WEKA - Wikipedia

    en.wikipedia.org/wiki/Auto-WEKA

    Auto-WEKA is an automated machine learning system based on Weka by Chris Thornton, Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown. [1] An extended version was published as Auto-WEKA 2.0. [2] Auto-WEKA was named the first prominent AutoML system in a neutral comparison study. [3] It received the test-of-time award of the SIGKDD conference ...

  6. Massive Online Analysis - Wikipedia

    en.wikipedia.org/wiki/Massive_Online_Analysis

    Frequent pattern mining. Itemsets [11] Graphs [12] Change detection algorithms [13] These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time. MOA supports bi-directional interaction with Weka. MOA is free software released under the GNU GPL.

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  8. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.

  9. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    Raw data. For example, suppose this data is to be clustered, and the Euclidean distance is the distance metric. The hierarchical clustering dendrogram would be: Traditional representation. Cutting the tree at a given height will give a partitioning clustering at a selected precision.

  1. Related searches classification example in data mining project using weka project proposal

    weka file formatweka software