enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. ... 75: 3·5 2: ...

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    2.75 Woodall primes. 3 See ... write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached. 2, 3, 211, 5, 23, 7 ...

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...

  5. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  6. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋. Each multiple of p 2 {\displaystyle p^{2}} contributes an additional factor of p , each multiple of p 3 {\displaystyle p^{3}} contributes yet another factor of p , etc. Adding up the number ...

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    The multiplicative property of the norm implies that a prime number p is either a Gaussian prime or the norm of a Gaussian prime. Fermat's theorem asserts that the first case occurs when p = 4 k + 3 , {\displaystyle p=4k+3,} and that the second case occurs when p = 4 k + 1 {\displaystyle p=4k+1} and p = 2. {\displaystyle p=2.}

  8. Radical of an integer - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_integer

    In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}

  9. Quaternary numeral system - Wikipedia

    en.wikipedia.org/wiki/Quaternary_numeral_system

    Prime factors of the base: 2, 5 Prime factors of one below the base: 3 Prime factors of one above the base: 11 Other prime factors: 7 13 17 19 23 29 31: Quaternary base Prime factors of the base: 2 Prime factors of one below the base: 3 Prime factors of one above the base: 5 (=11 4) Other prime factors: 13 23 31 101 103 113 131 133: Fraction ...