Search results
Results from the WOW.Com Content Network
If the Earth had a constant density ρ, the mass would be M(r) = (4/3)πρr 3 and the dependence of gravity on depth would be =. The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth.
One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.
Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...
The force of gravity is weakest at the equator because of the centrifugal force caused by the Earth's rotation and because points on the equator are farthest from the center of the Earth. The force of gravity varies with latitude, and the resultant acceleration increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles ...
It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...
Examples of force. The following list shows different orders of magnitude of force. Since weight under gravity is a force, several of these examples refer to the weight of various objects. Unless otherwise stated, these are weights under average Earth gravity at sea level.
The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.