Search results
Results from the WOW.Com Content Network
Gaussian functions are often used to represent the probability density function of a normally distributed random variable with expected value μ = b and variance σ 2 = c 2. In this case, the Gaussian is of the form [1]
If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ( B ) d . {\displaystyle \det ...
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...
Each column containing a leading 1 has zeros in all entries above the leading 1. While a matrix may have several echelon forms, its reduced echelon form is unique. Given a matrix in reduced row echelon form, if one permutes the columns in order to have the leading 1 of the i th row in the i th column, one gets a matrix of the form
Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form. They are also used in Gauss–Jordan elimination to further reduce the matrix to reduced row echelon form .
The use of Gaussian elimination for putting the augmented matrix in reduced row echelon form does not change the set of solutions and the ranks of the involved matrices. The theorem can be read almost directly on the reduced row echelon form as follows. The rank of a matrice is number of nonzero rows in its reduced row echelon form.
Gaussian elimination has O(n 3) complexity, but introduces division, which results in round-off errors when implemented using floating point numbers. Round-off errors can be avoided if all the numbers are kept as integer fractions instead of floating point. But then the size of each element grows in size exponentially with the number of rows. [1]
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition).