enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...

  3. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    After trapezoid rule estimates are obtained, Richardson extrapolation is applied. For the first iteration the two piece and one piece estimates are used in the formula ⁠ 4 × (more accurate) − (less accurate) / 3 ⁠. The same formula is then used to compare the four piece and the two piece estimate, and likewise for the higher estimates

  4. Bulirsch–Stoer algorithm - Wikipedia

    en.wikipedia.org/wiki/Bulirsch–Stoer_algorithm

    In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...

  5. Series acceleration - Wikipedia

    en.wikipedia.org/wiki/Series_acceleration

    Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the ...

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Methods based on Richardson extrapolation, [14] such as the Bulirsch–Stoer algorithm, [15] [16] are often used to construct various methods of different orders. Other desirable features include: dense output: cheap numerical approximations for the whole integration interval, and not only at the points t 0, t 1, t 2, ...

  7. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Romberg's method — Richardson extrapolation applied to trapezium rule; Gaussian quadrature — highest possible degree with given number of points Chebyshev–Gauss quadrature — extension of Gaussian quadrature for integrals with weight (1 − x 2) ±1/2 on [−1, 1]

  8. Modified Richardson iteration - Wikipedia

    en.wikipedia.org/wiki/Modified_Richardson_iteration

    Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as

  9. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    It is natural to ask what the result would be if the step size were allowed to approach zero. This can be answered by extrapolating the result from two or more nonzero step sizes, using series acceleration methods such as Richardson extrapolation. The extrapolation function may be a polynomial or rational function.