Search results
Results from the WOW.Com Content Network
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
Proton-exchange membrane fuel cell (PEM) A fuel cell incorporating a solid polymer membrane used as its electrolyte. Protons (H+) are transported from the anode to the cathode. The operating temperature range is generally 60–100 °C for Low Temperature Proton-exchange membrane fuel cell (LT-PEMFC). [60]
An ion-exchange membrane is a semi-permeable membrane that transports certain dissolved ions, while blocking other ions or neutral molecules. [1] Ion-exchange membranes are therefore electrically conductive. They are often used in desalination and chemical recovery applications, moving ions from one solution to another with little passage of ...
It typically consists of an anode, cathode, and two ion exchange membranes. This configuration allows for efficient proton conduction and effective gas diffusion, making it suitable for various applications, including fuel cell vehicles and portable power systems. Research has shown that 5-layer MEAs can provide improved performance under ...
A unitized regenerative fuel cell (URFC) is a fuel cell based on the proton exchange membrane which can do the electrolysis of water in regenerative mode and function in the other mode as a fuel cell recombining oxygen and hydrogen gas to produce electricity. Both modes are done with the same fuel cell stack [1]
A hydrogen fueled proton-exchange membrane fuel cell, for example, uses hydrogen gas (H 2) and oxygen (O 2) to produce electricity and water (H 2 O); a regenerative hydrogen fuel cell uses electricity and water to produce hydrogen and oxygen. [4] [5] [6]