Search results
Results from the WOW.Com Content Network
The noble gases (helium, neon, argon, krypton, xenon and radon) were previously known as 'inert gases' because of their perceived lack of participation in any chemical reactions. The reason for this is that their outermost electron shells (valence shells) are completely filled, so that they have little tendency to gain or lose electrons.
Extrapolation from periodic trends predict that oganesson should be the most reactive of the noble gases; more sophisticated theoretical treatments indicate greater reactivity than such extrapolations suggest, to the point where the applicability of the descriptor "noble gas" has been questioned. [52]
In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon .
Like the noble gases, the tendency for non-reactivity is due to the valence, the outermost electron shell, being complete in all the inert gases. [4] This is a tendency, not a rule, as all noble gases and other "inert" gases can react to form compounds under some conditions.
From left to right in the periodic table, the nonmetals can be divided into the reactive nonmetals and the noble gases. The reactive nonmetals near the metalloids show some incipient metallic character, such as the metallic appearance of graphite, black phosphorus, selenium and iodine. The noble gases are almost completely inert.
Consequently, some expect oganesson to have similar physical and chemical properties to other members of its group, most closely resembling the noble gas above it in the periodic table, radon. [123] Following the periodic trend , oganesson would be expected to be slightly more reactive than radon.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Hydrogen is again placed by itself on account of its uniqueness. The remaining nonmetals are divided into metalloids, nonmetals, (referred to as "quintessential nonmetals"), halogens, and noble gases. Since the metalloids abut the post-transition or "poor" metals, they might be renamed as "poor non-metals". [11]