Search results
Results from the WOW.Com Content Network
Neurosecretion is the release of extracellular vesicles and particles from neurons, astrocytes, microglial and other cells of the central nervous system.These neurohormones, produced by neurosecretory cells, are normally secreted from nerve cells in the brain that then circulate into the blood.
The pituitary gland (or hypophysis) is an endocrine gland about the size of a pea and weighing 0.5 grams (0.018 oz) in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain, and rests in a small, bony cavity (sella turcica) covered by a dural fold (diaphragma sellae).
The anterior pituitary (also called the adenohypophysis or pars anterior) is a major organ of the endocrine system.The anterior pituitary is the glandular, anterior lobe that together with the (posterior pituitary, or the neurohypophysis) makes up the pituitary gland (hypophysis) which, in humans, is located at the base of the brain, protruding off the bottom of the hypothalamus.
These hormones are released from the anterior pituitary under the influence of the hypothalamus. Hypothalamic hormones are secreted to the anterior lobe by way of a special capillary system, called the hypothalamic-hypophysial portal system. There is also a non-endocrine cell population called folliculostellate cells.
A neurohormone is any hormone produced and released by neuroendocrine cells (also called neurosecretory cells) into the blood. [1] [2] By definition of being hormones, they are secreted into the circulation for systemic effect, but they can also have a role of neurotransmitter or other roles such as autocrine (self) or paracrine (local) messenger.
The hypothalamus controls the anterior pituitary's hormone secretion by sending releasing factors, called tropic hormones, down the hypothalamo-hypophysial portal system. [3] For example, thyrotropin-releasing hormone released by the hypothalamus in to the portal system stimulates the secretion of thyroid-stimulating hormone by the anterior ...
Proper hormone secretion is crucial for the growth of the developing fetus.In order to allow a controlled hormone secretion in the developing organs of the fetus, stimulating hormones must be exchanged in the regulating structures in the brain in early stages of the development.
Secretion of bicarbonate from liver, pancreas and duodenal Brunner's glands. Enhances effects of cholecystokinin Stops production of gastric juice 58 Somatostatin (or growth hormone–inhibiting hormone or growth hormone release–inhibiting hormone or somatotropin release–inhibiting factor or somatotropin release–inhibiting hormone)