Search results
Results from the WOW.Com Content Network
Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions. The net-reaction of all light-dependent reactions in oxygenic photosynthesis is: 2 H 2 O + 2 NADP + + 3ADP + 3P i → O 2 + 2 H + + 2NADPH + 3ATP. PSI and PSII are light-harvesting complexes.
A neural pathway connects one part of the nervous system to another using bundles of axons called tracts. The optic tract that extends from the optic nerve is an example of a neural pathway because it connects the eye to the brain; additional pathways within the brain connect to the visual cortex.
In cyclic photophosphorylation, the high-energy electron released from P700, a pigment in a complex called photosystem I, flows in a cyclic pathway. The electron starts in photosystem I, passes from the primary electron acceptor to ferredoxin and then to plastoquinone , next to cytochrome b 6 f (a similar complex to that found in mitochondria ...
The enzymes in the Calvin cycle are functionally equivalent to most enzymes used in other metabolic pathways such as gluconeogenesis and the pentose phosphate pathway, but the enzymes in the Calvin cycle are found in the chloroplast stroma instead of the cell cytosol, separating the reactions. They are activated in the light (which is why the ...
In neuroanatomy, the retinohypothalamic tract (RHT) is a photic neural input pathway involved in the circadian rhythms of mammals. [1] The origin of the retinohypothalamic tract is the intrinsically photosensitive retinal ganglion cells (ipRGC), which contain the photopigment melanopsin.
Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [ 1 ] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ...
It is a metallo-oxo cluster comprising four manganese ions (in oxidation states ranging from +3 to +4) [6] and one divalent calcium ion. When it oxidizes water, producing oxygen gas and protons, it sequentially delivers the four electrons from water to a tyrosine (D1-Y161) sidechain and then to P680 itself.
Alarm photosynthesis represents a photosynthetic variant to be added to the well-known C4 and CAM pathways. However, alarm photosynthesis, in contrast to these pathways, operates as a biochemical pump that collects carbon from the organ interior (or from the soil) and not from the atmosphere. [35] [36]