Search results
Results from the WOW.Com Content Network
Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]
A dielectric resonator oscillator (DRO) is an electronic component that exhibits resonance of the polarisation response for a narrow range of frequencies, generally in the microwave band. It consists of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor. Such resonators are often used to provide a frequency ...
In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε , is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy ...
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters ...
In dielectric spectroscopy, large frequency dependent contributions to the dielectric response, especially at low frequencies, may come from build-ups of charge.This Maxwell–Wagner–Sillars polarization (or often just Maxwell-Wagner polarization), occurs either at inner dielectric boundary layers on a mesoscopic scale, or at the external electrode-sample interface on a macroscopic scale.
In the presence of an electric field, e.g., the electromagnetic field around an electron, these particle–antiparticle pairs reposition themselves, thus partially counteracting the field (a partial screening effect, a dielectric effect). The field therefore will be weaker than would be expected if the vacuum were completely empty.