Search results
Results from the WOW.Com Content Network
The direct sum is an operation between structures in abstract algebra, ... for different kinds of structures. As an example, the direct sum of two abelian groups ...
In mathematics, a group G is called the direct sum [1] [2] of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information.
In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.
The former may be written as a direct sum of finitely many groups of the form / for prime, and the latter is a direct sum of finitely many copies of . If f , g : G → H {\displaystyle f,g:G\to H} are two group homomorphisms between abelian groups, then their sum f + g {\displaystyle f+g} , defined by ( f + g ) ( x ) = f ( x ) + g ( x ...
For any , is a two-sided -module, and the direct sum decomposition is a direct sum of -modules. R {\displaystyle R} is an associative R 0 {\displaystyle R_{0}} -algebra . An ideal I ⊆ R {\displaystyle I\subseteq R} is homogeneous , if for every a ∈ I {\displaystyle a\in I} , the homogeneous components of a ...
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization.
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
A free R-module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the ring R. These are the modules that behave very much like vector spaces. Projective Projective modules are direct summands of free modules and share many of their desirable properties. Injective