Search results
Results from the WOW.Com Content Network
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
In a cyclic orthodiagonal quadrilateral, the anticenter coincides with the point where the diagonals intersect. [3] Brahmagupta's theorem states that for a cyclic orthodiagonal quadrilateral, the perpendicular from any side through the point of intersection of the diagonals bisects the opposite side. [3]
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.
If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23] In a cyclic orthodiagonal quadrilateral, the distance between the midpoints of the diagonals equals the distance between the circumcenter and the point where the diagonals intersect. [23]
If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...
Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic. Orthodiagonal quadrilateral: the diagonals cross at right angles. Equidiagonal quadrilateral: the diagonals are of equal length.
In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.
For example, a regular pentagram, {5/2}, has 5 sides, and the regular hexagram, {6/2} or 2{3}, has 6 sides divided into two triangles. A regular polygram { p / q } can either be in a set of regular star polygons (for gcd ( p , q ) = 1, q > 1) or in a set of regular polygon compounds (if gcd( p , q ) > 1).