Search results
Results from the WOW.Com Content Network
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
In engineering, attenuation is usually measured in units of decibels per unit length of medium (dB/cm, dB/km, etc.) and is represented by the attenuation coefficient of the medium in question. [1] Attenuation also occurs in earthquakes ; when the seismic waves move farther away from the hypocenter , they grow smaller as they are attenuated by ...
The mass attenuation coefficient can be looked up or calculated for any material and energy combination using the National Institute of Standards and Technology (NIST) databases. [ 7 ] [ 8 ] In X-ray radiography the calculation of the mean free path is more complicated, because photons are not mono-energetic, but have some distribution of ...
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
For example, the n(λ) and k(λ) spectra of one or more of the films may be known from the literature or previous measurements, and held fixed (not allowed to vary) during the regression. To obtain the results shown in Example 1, the n ( λ ) and k ( λ ) spectra of the SiO 2 layer was fixed, and the other parameters, n ( λ ) and k ( λ ) of a ...
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
ε i is the molar attenuation coefficient of the attenuating species i in the material sample; c i is the amount concentration of the attenuating species i in the material sample; ℓ is the path length of the beam of light through the material sample. Attenuation cross section and molar attenuation coefficient are related by