Search results
Results from the WOW.Com Content Network
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant. This transport process is called translocation. [2]
While new pith growth is usually white or pale in color, as the tissue ages it commonly darkens to a deeper brown color. In trees pith is generally present in young growth, but in the trunk and older branches the pith often gets replaced – in great part – by xylem. In some plants, the pith in the middle of the stem may dry out and ...
The rhytidome is the most familiar part of bark, being the outer layer that covers the trunks of trees. It is composed mostly of dead cells and is produced by the formation of multiple layers of suberized periderm, cortical and phloem tissue. [33] The rhytidome is especially well developed in older stems and roots of trees.
The trunk consists of five main parts: The outer bark, inner bark , cambium, sapwood (live xylem), and heartwood (dead xylem). [2] From the outside of the tree working in: The first layer is the outer bark; this is the protective outermost layer of the trunk. Under this is the inner bark which is called the phloem. The phloem is how the tree ...
The siphonostele shown on the left may also be called an amphiphloic siphonostele. The eustele shown on the right is collateral, i.e. with all the phloem on one side of the xylem. Siphonosteles have a central region of ground tissue called the pith, with the vascular strand comprising a hollow cylinder surrounding the pith. [9]
Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem. These two tissues transport fluid and nutrients internally. There are also two meristems associated with vascular tissue: the vascular cambium and the cork cambium.
Phloem is a specialised tissue for food transport in higher plants, mainly transporting sucrose along pressure gradients generated by osmosis, a process called translocation. Phloem is a complex tissue, consisting of two main cell types, the sieve tubes and the intimately associated companion cells, together with parenchyma cells, phloem fibres ...
Phloem was introduced by Carl Nägeli in 1858 after the discovery of sieve elements. Since then, multiple studies have been conducted on how sieve elements function in phloem in terms of working as a transport mechanism. [2] An example of analysis of phloem through sieve elements was conducted in the study of Arabidopsis leaves.