Search results
Results from the WOW.Com Content Network
Continuous functions, monotone functions, step functions, semicontinuous functions, Riemann-integrable functions, and functions of bounded variation are all Lebesgue measurable. [2] A function f : X → C {\displaystyle f:X\to \mathbb {C} } is measurable if and only if the real and imaginary parts are measurable.
The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let {} be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials ...
Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.
In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().
is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.
The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).
Let L 2 (X, μ) be the space of those complex-valued measurable functions on X for which the Lebesgue integral of the square of the absolute value of the function is finite, i.e., for a function f in L 2 (X, μ), | | <, and where functions are identified if and only if they differ only on a set of measure zero.
Let (,,) be a measure space, i.e. : [,] is a set function such that () = and is countably-additive. All functions considered in the sequel will be functions :, where = or .We adopt the following definitions according to Bogachev's terminology.