Search results
Results from the WOW.Com Content Network
Once the universe expanded and cooled to a critical temperature of approximately 2 × 10 12 K, [3] quarks combined into normal matter and antimatter and proceeded to annihilate up to the small initial asymmetry of about one part in five billion, leaving the matter around us. [3]
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
The distribution of known baryons in the universe. [14] The census of known baryons in the universe tallied to around 60% of total baryons until the resolution of the missing baryon problem. This is in distinction from composition of the entire universe which includes dark energy and dark matter of which baryonic matter composes only 5%. [19]
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
Under current theory, the Big Bang explosion that initiated the universe should have produced equal amounts of matter and antimatter. This, however, does not seem to be the case.
Hydrogen-1 is the most abundant nuclide, comprising roughly 92% of the atoms in the Universe, with helium-4 second at 8%. Other isotopes including 2 H, 3 H, 3 He, 6 Li, 7 Li, and 7 Be are much rarer; the estimated abundance of primordial lithium is 10 −10 relative to hydrogen. [ 5 ]
Spoilers ahead! We've warned you. We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT ...