Search results
Results from the WOW.Com Content Network
The Kepler line of graphics cards by Nvidia were released in 2012 and were used in the Nvidia's 600 and 700 series cards. A feature in this GPU microarchitecture included GPU boost, a technology that adjusts the clock-speed of a video card to increase or decrease it according to its power draw. [42]
The clock rate of the first generation of computers was measured in hertz or kilohertz (kHz), the first personal computers (PCs) to arrive throughout the 1970s and 1980s had clock rates measured in megahertz (MHz), and in the 21st century the speed of modern CPUs is commonly advertised in gigahertz (GHz).
In these scenarios, GPU Boost will gradually increase the clock speed in steps, until the GPU reaches a predefined power target of 170W by default (on the 680 card). [5] By taking this approach, the GPU will ramp its clock up or down dynamically, so that it is providing the maximum amount of speed possible while remaining within TDP specifications.
Performance lies between a Geforce 3 Series GPU and a Geforce 4 Series GPU. This is due to the added vertex shader present on the ASIC, thus doubling the vertex output compared to Geforce 3 ASICs. Clock speed is the same as the original Geforce 3 series GPU (233MHz) thus slower than Geforce 4 series starting at 250MHz. [7]
The processor consists of different clock domains, meaning that the entire chip does not operate the same clock speed. This causes some difficulty when measuring peak throughput of its various functions. Further adding to the confusion, it is listed as 667 MHz in Intel G965 white paper, but listed as 400 MHz in Intel G965 datasheet.
RDNA 3 was designed to support high clock speeds. On RDNA 3, clock speeds have been decoupled with the front end operating at a 2.5 GHz frequency while the shaders operate at 2.3 GHz. The shaders operating at a lower clock speed gives up to 25% power savings according to AMD and RDNA 3's shader clock speed is still 15% faster than RDNA 2. [19]
This clock speed is set to the level which will ensure that the GPU stays within TDP specifications, even at maximum loads. [3] When loads are lower, however, there is room for the clock speed to be increased without exceeding the TDP. In these scenarios, GPU Boost will gradually increase the clock speed in steps, until the GPU reaches a ...
The purpose of overclocking is to increase the operating speed of a given component. [3] Normally, on modern systems, the target of overclocking is increasing the performance of a major chip or subsystem, such as the main processor or graphics controller, but other components, such as system memory or system buses (generally on the motherboard), are commonly involved.