enow.com Web Search

  1. Ad

    related to: impedance calculator for capacitor current and frequency

Search results

  1. Results from the WOW.Com Content Network
  2. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  3. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    The resonant frequency is defined as the frequency at which the impedance of the circuit is at a minimum. Equivalently, it can be defined as the frequency at which the impedance is purely real (that is, purely resistive). This occurs because the impedances of the inductor and capacitor at resonant are equal but of opposite sign and cancel out.

  4. LC circuit - Wikipedia

    en.wikipedia.org/wiki/LC_circuit

    A parallel resonant circuit provides current magnification. A parallel resonant circuit can be used as load impedance in output circuits of RF amplifiers. Due to high impedance, the gain of amplifier is maximum at resonant frequency. Both parallel and series resonant circuits are used in induction heating.

  5. Impedance matching - Wikipedia

    en.wikipedia.org/wiki/Impedance_matching

    For example, in order to match an inductive load into a real impedance, a capacitor needs to be used. If the load impedance becomes capacitive, the matching element must be replaced by an inductor. In many cases, there is a need to use the same circuit to match a broad range of load impedance and thus simplify the circuit design.

  6. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    The capacitor will be discharged to about 36.8% after τ, and essentially fully discharged (0.7%) after about 5τ. Note that the current, I, in the circuit behaves as the voltage across the resistor does, via Ohm's Law. These results may also be derived by solving the differential equations describing the circuit:

  7. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  8. Constant phase element - Wikipedia

    en.wikipedia.org/wiki/Constant_phase_element

    where the CPE admittance is: = and Q 0 and n (0<n<1) are frequency independent. [1] Q 0 = 1/|Z| at ω = 1 rad/s The constant phase is always −(90*n)°, with n from 0 to 1. The case n = 1 describes an ideal capacitor while the case n = 0 describes a pure resistor.

  9. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    An equivalent impedance is an equivalent circuit of an electrical network of impedance elements [note 2] which presents the same impedance between all pairs of terminals [note 10] as did the given network. This article describes mathematical transformations between some passive, linear impedance networks commonly found in electronic circuits.

  1. Ad

    related to: impedance calculator for capacitor current and frequency