Search results
Results from the WOW.Com Content Network
StringLength[string] Mathematica «FUNCTION» LENGTH(string) or «FUNCTION» BYTE-LENGTH(string) number of characters and number of bytes, respectively COBOL: string length string: a decimal string giving the number of characters Tcl: ≢ string: APL: string.len() Number of bytes Rust [30] string.chars().count() Number of Unicode code points ...
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
In computational linguistics and computer science, edit distance is a string metric, i.e. a way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other.
For example, the strings "Sam" and "Samuel" can be considered to be close. [1] A string metric provides a number indicating an algorithm-specific indication of distance. The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2]
A string homomorphism (often referred to simply as a homomorphism in formal language theory) is a string substitution such that each character is replaced by a single string. That is, f ( a ) = s {\displaystyle f(a)=s} , where s {\displaystyle s} is a string, for each character a {\displaystyle a} .
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
Adding transpositions adds significant complexity. The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction.