Search results
Results from the WOW.Com Content Network
There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.
The exceptional graph is a regular hexagon with one diagonal and a vertex at the center added; only 1 / 6 of its permutations can be attained, which gives an instance of the exotic embedding of S 5 into S 6. For larger versions of the n puzzle, finding a solution is easy. But, the problem of finding the shortest solution is NP-hard.
First, observe that the problem is symmetric for permutations of the names of the pegs (symmetric group S 3). If a solution is known moving from peg A to peg C, then, by renaming the pegs, the same solution can be used for every other choice of starting and destination peg. If there is only one disk (or even none at all), the problem is trivial.
In a 2005 study, Felgenhauer and Jarvis [13] [12] analyzed the permutations of the top band used in valid solutions. Once the Band1 symmetries and equivalence classes for the partial grid solutions were identified, the completions of the lower two bands were constructed and counted for each equivalence class.
The 100 prisoners problem is a mathematical problem in probability theory and combinatorics. In this problem, 100 numbered prisoners must find their own numbers in one of 100 drawers in order to survive. The rules state that each prisoner may open only 50 drawers and cannot communicate with other prisoners.
In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.
Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...