Search results
Results from the WOW.Com Content Network
The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).
Laplace wrote extensively about the use of generating functions (1814), and the integral form of the Laplace transform evolved naturally as a result. [5] Laplace's use of generating functions was similar to what is now known as the z-transform, and he gave little attention to the continuous variable case which was discussed by Niels Henrik Abel ...
Gabor transform; Hankel transform; Hartley transform; Hermite transform; Hilbert transform. Hilbert–Schmidt integral operator; Jacobi transform; Laguerre transform; Laplace transform. Inverse Laplace transform; Two-sided Laplace transform; Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre ...
The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by
Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Let (,) be a function and a complex variable. The Laplace–Carson transform is defined as: [1] (,) = (,)The inverse Laplace–Carson transform is: (,) = + (,)where is a real-valued constant, refers to the imaginary axis, which indicates the integral is carried out along a straight line parallel to the imaginary axis lying to the right of all the singularities of the following expression:
In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform: