Search results
Results from the WOW.Com Content Network
The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.
1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650 [1] 1962 A. L. MacKay Bravais Lattices in Four-dimensional Space [2] 1964 Patrick du Val, Homographies, quaternions and rotations, quaternion-based 4D point groups
A generalization of a rotation applies in special relativity, where it can be considered to operate on a four-dimensional space, spacetime, spanned by three space dimensions and one of time. In special relativity, this space is called Minkowski space, and the four-dimensional rotations, called Lorentz transformations, have a physical ...
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). ... They can be used to generate rotations in four dimensions.
Rotations in 4-dimensional Euclidean space can be seen as the composition of two 2-dimensional rotations in completely orthogonal planes. [6] The 16-cell is a simple frame in which to observe 4-dimensional rotations, because each of the 16-cell's 6 great squares has another completely orthogonal great square (there are 3 pairs of completely ...
Any fixed eigenvectors occur in pairs, and the axis of rotation is an even-dimensional subspace. For odd dimensions n = 2k + 1, a proper rotation R will have an odd number of eigenvalues, with at least one λ = 1 and the axis of rotation will be an odd dimensional subspace. Proof:
A four-vector A is a vector with a "timelike" component and three "spacelike" components, and can be written in various equivalent notations: [3] = (,,,) = + + + = + = where A α is the magnitude component and E α is the basis vector component; note that both are necessary to make a vector, and that when A α is seen alone, it refers strictly to the components of the vector.
To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at