Search results
Results from the WOW.Com Content Network
The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.
1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650 [1] 1962 A. L. MacKay Bravais Lattices in Four-dimensional Space [2] 1964 Patrick du Val, Homographies, quaternions and rotations, quaternion-based 4D point groups
Any fixed eigenvectors occur in pairs, and the axis of rotation is an even-dimensional subspace. For odd dimensions n = 2k + 1, a proper rotation R will have an odd number of eigenvalues, with at least one λ = 1 and the axis of rotation will be an odd dimensional subspace. Proof:
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). ... They can be used to generate rotations in four dimensions.
A generalization of a rotation applies in special relativity, where it can be considered to operate on a four-dimensional space, spacetime, spanned by three space dimensions and one of time. In special relativity, this space is called Minkowski space, and the four-dimensional rotations, called Lorentz transformations, have a physical ...
The four-dimensional spacetime can be visualized as a four-dimensional space, with each point representing an event in spacetime. The Lorentz transformations can then be thought of as rotations in this four-dimensional space, where the rotation axis corresponds to the direction of relative motion between the two observers and the rotation angle ...
In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts.
Rotations in 4-dimensional Euclidean space can be seen as the composition of two 2-dimensional rotations in completely orthogonal planes. [6] The 16-cell is a simple frame in which to observe 4-dimensional rotations, because each of the 16-cell's 6 great squares has another completely orthogonal great square (there are 3 pairs of completely ...