enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Chemical_thermodynamics

    The second was the 1933 book Modern Thermodynamics by the methods of Willard Gibbs written by E. A. Guggenheim. In this manner, Lewis, Randall, and Guggenheim are considered as the founders of modern chemical thermodynamics because of the major contribution of these two books in unifying the application of thermodynamics to chemistry. [1]

  3. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  5. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The Collected Works of J. Willard Gibbs Thermodynamics. New York: Longmans, Green and Co. Vol. 1, pp. 55–349. Guggenheim E.A. (1933). Modern thermodynamics by the methods of Willard Gibbs. London: Methuen & co. ltd. Denbigh K. (1981). The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering. London ...

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  7. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  8. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  9. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    This is the most useful form of the second law of thermodynamics in chemistry, where free-energy changes can be calculated from tabulated enthalpies of formation and standard molar entropies of reactants and products. [19] [15] The chemical equilibrium condition at constant T and p without electrical work is dG = 0.