Search results
Results from the WOW.Com Content Network
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
The defining equation for thermal conductivity is =, where is the heat flux, is the thermal conductivity, and is the temperature gradient. This is known as Fourier's law for heat conduction. Although commonly expressed as a scalar , the most general form of thermal conductivity is a second-rank tensor .
Since heat density is proportional to temperature in a homogeneous medium, the heat equation is still obeyed in the new units. Suppose that a body obeys the heat equation and, in addition, generates its own heat per unit volume (e.g., in watts/litre - W/L) at a rate given by a known function q varying in space and time. [ 5 ]
Thermal conductivity, frequently represented by k, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. [ 1 ]
The standard method can be used for analyzing radial systems under steady state conditions, starting with the appropriate form of the heat equation, or the alternative method, starting with the appropriate form of Fourier's law. For a hollow cylinder in steady state conditions with no heat generation, the appropriate form of heat equation is [9]
Let K 0 is the normal conductivity at one bar (10 5 N/m 2) pressure, K e is its conductivity at special pressure and/or length scale. Let d is a plate distance in meters, P is an air pressure in Pascals (N/m 2 ), T is temperature Kelvin, C is this Lasance constant 7.6 ⋅ 10 −5 m ⋅ K/N and PP is the product P ⋅ d/T .
Figure 1: Thermal pressure as a function of temperature normalized to A of the few compounds commonly used in the study of Geophysics. [3]The thermal pressure coefficient can be considered as a fundamental property; it is closely related to various properties such as internal pressure, sonic velocity, the entropy of melting, isothermal compressibility, isobaric expansibility, phase transition ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer