Search results
Results from the WOW.Com Content Network
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
When n = 3, a level set is called a level surface (or isosurface); so a level surface is the set of all real-valued roots of an equation in three variables x 1, x 2 and x 3. For higher values of n, the level set is a level hypersurface, the set of all real-valued roots of an equation in n > 3 variables. A level set is a special case of a fiber.
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
More generally, one can formulate a similar trick using the normal bundle to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space. One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system.
In special relativity the focus is on the 3-dimensional hypersurface in the future of spacetime where various velocities arrive after a given proper time. Scott Walter [ 2 ] explains that in November 1907 Hermann Minkowski alluded to a well-known three-dimensional hyperbolic geometry while speaking to the Göttingen Mathematical Society, but ...
The Euclidean algorithm was probably invented before Euclid, depicted here holding a compass in a painting of about 1474. The Euclidean algorithm is one of the oldest algorithms in common use. [27] It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3). In Book 7, the algorithm ...
In the special case of vector fields on three-dimensional Euclidean space, the hypersurface-orthogonal condition is equivalent to the complex lamellar condition, as seen by rewriting ω ∧ dω in terms of the Hodge star operator as ∗ ω, ∗dω , with ∗dω being the 1-form dual to the curl vector field. [10]
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]