Search results
Results from the WOW.Com Content Network
Presented here are two algorithms: the first, [8] simpler one, computes what is known as the optimal string alignment distance or restricted edit distance, [7] while the second one [9] computes the Damerau–Levenshtein distance with adjacent transpositions. Adding transpositions adds significant complexity.
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
In computer science and statistics, the Jaro–Winkler similarity is a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric [1] (1989, Matthew A. Jaro) proposed in 1990 by William E. Winkler.
A requirement for a string metric (e.g. in contrast to string matching) is fulfillment of the triangle inequality. For example, the strings "Sam" and "Samuel" can be considered to be close. [1] A string metric provides a number indicating an algorithm-specific indication of distance.
More formally, for any language L and string x over an alphabet Σ, the language edit distance d(L, x) is given by [14] (,) = (,), where (,) is the string edit distance. When the language L is context free , there is a cubic time dynamic programming algorithm proposed by Aho and Peterson in 1972 which computes the language edit distance. [ 15 ]
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
In computer science, the longest palindromic substring or longest symmetric factor problem is the problem of finding a maximum-length contiguous substring of a given string that is also a palindrome. For example, the longest palindromic substring of "bananas" is "anana".
Searching operations include (but are not necessarily limited to) exact lookup, find predecessor, find successor, and find all strings with a prefix. All of these operations are O(k) where k is the maximum length of all strings in the set, where length is measured in the quantity of bits equal to the radix of the radix trie.